The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1.

نویسندگان

  • A C Goldstrohm
  • T R Albrecht
  • C Suñé
  • M T Bedford
  • M A Garcia-Blanco
چکیده

CA150 represses RNA polymerase II (RNAPII) transcription by inhibiting the elongation of transcripts. The FF repeat domains of CA150 bind directly to the phosphorylated carboxyl-terminal domain of the largest subunit of RNAPII. We determined that this interaction is required for efficient CA150-mediated repression of transcription from the alpha(4)-integrin promoter. Additional functional determinants, namely, the WW1 and WW2 domains of CA150, were also required for efficient repression. A protein that interacted directly with CA150 WW1 and WW2 was identified as the splicing-transcription factor SF1. Previous studies have demonstrated a role for SF1 in transcription repression, and we found that binding of the CA150 WW1 and WW2 domains to SF1 correlated exactly with the functional contribution of these domains for repression. The binding specificity of the CA150 WW domains was found to be unique in comparison to known classes of WW domains. Furthermore, the CA150 binding site, within the carboxyl-terminal half of SF1, contains a novel type of proline-rich motif that may be recognized by the CA150 WW1 and WW2 domains. These results support a model for the recruitment of CA150 to repress transcription elongation. In this model, CA150 binds to the phosphorylated CTD of elongating RNAPII and SF1 targets the nascent transcript.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions.

The human transcription elongation factor CA150 contains three N-terminal WW domains and six consecutive FF domains. WW and FF domains, versatile modules that mediate protein-protein interactions, are found in nuclear proteins involved in transcription and splicing. CA150 interacts with the splicing factor SF1 and with the phosphorylated C-terminal repeat domain (CTD) of RNA polymerase II (RNAP...

متن کامل

FF domains of CA150 bind transcription and splicing factors through multiple weak interactions.

The human transcription factor CA150 modulates human immunodeficiency virus type 1 gene transcription and contains numerous signaling elements, including six FF domains. Repeated FF domains are present in several transcription and splicing factors and can recognize phosphoserine motifs in the C-terminal domain (CTD) of RNA polymerase II (RNAPII). Using mass spectrometry, we identify a number of...

متن کامل

The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo.

A growing body of evidence supports the coordination of mRNA synthesis and its subsequent processing events. Nuclear proteins harboring both WW and FF protein interaction modules bind to splicing factors as well as RNA polymerase II and may serve to link transcription with splicing. To understand how WW domains coordinate the assembly of splicing complexes, we used glutathione S-transferase fus...

متن کامل

Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription

Autoimmune regulator (AIRE) is a transcription factor that induces the expression of a large subset of otherwise strictly tissue restricted antigens in medullary thymic epithelial cells, thereby enabling their presentation to developing T cells for negative selection. Mutations in AIRE lead to autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a rare monogenetic disease. A...

متن کامل

Shedding UV Light on Alternative Splicing

After DNA damage, cells modulate pre-messenger RNA (pre-mRNA) splicing to induce an anti- or proapoptotic response. In this issue, Muñoz et al. (2009) uncover a cotranscriptional mechanism for activating alternative pre-mRNA splicing after ultraviolet irradiation that depends unexpectedly on hyperphosphorylation of the RNA polymerase II C-terminal domain and decreased rates of transcription elo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 21 22  شماره 

صفحات  -

تاریخ انتشار 2001